first record | previous record | next record | last record
full | marc
Record 1 of 1
  Total Requests  0      Unsatisfied Requests  0
You searched Library Catalogue - Author: Waters, Alan
Call Number (WOU) QA76.9.V5 B422 2018
Call Number (DISTED) QA76.9.V5 B422 2018
Author Bhattacharjee, Abhishek,
Title Architectural and operating system support for virtual memory / Abhishek Bhattacharjee, Daniel Lustig.
Abstract This book provides computer engineers, academic researchers, new graduate students, and seasoned practitioners an end-to-end overview of virtual memory. We begin with a recap of foundational concepts and discuss not only state-of-the-art virtual memory hardware and software support available today, but also emerging research trends in this space. The span of topics covers processor microarchitecture, memory systems, operating system design, and memory allocation. We show how efficient virtual memory implementations hinge on careful hardware and software cooperation, and we discuss new research directions aimed at addressing emerging problems in this space. Virtual memory is a classic computer science abstraction and one of the pillars of the computing revolution. It has long enabled hardware flexibility, software portability, and overall better security, to name just a few of its powerful benefits. Nearly all user-level programs today take for granted that they will have been freed from the burden of physical memory management by the hardware, the operating system, device drivers, and system libraries. However, despite its ubiquity in systems ranging from warehouse-scale datacenters to embedded Internet of Things (IoT) devices, the overheads of virtual memory are becoming a critical performance bottleneck today. Virtual memory architectures designed for individual CPUs or even individual cores are in many cases struggling to scale up and scale out to today's systems which now increasingly include exotic hardware accelerators (such as GPUs, FPGAs, or DSPs) and emerging memory technologies (such as non-volatile memory), and which run increasingly intensive workloads (such as virtualized and/or "big data" applications). As such, many of the fundamental abstractions and implementation approaches for virtual memory are being augmented, extended, or entirely rebuilt in order to ensure that virtual memory remains viable and performant in the years to come.
Notes Includes bibliographical references.
Publisher/Year [San Rafael, California] : Morgan & Claypool Publishers, 2018.
Physical Description 1 online resource (xvii, 157 pages) : illustrations (some color).
Series Synthesis lectures on computer architecture, #42
Subject Virtual storage (Computer science)
Full Text View full-text here
Extended Info Summary
Barnes & Noble
Cover image of this book






Advanced searchTips
 Words: Search type:
 
Database: Library Catalogue
Location Filter:
All Libraries
WOU Main Library
RC Ipoh Library
RC Johor Bahru Library
RC Kuala Lumpur Library
RC Kuching Library
DISTED Main Library
DISTED Hospitality Library